

Nanoscience on High Performance Computers: From Methods to Codes to Applications

(Plane-wave, DFT codes)

Andrew Canning Computational Research Division LBNL

(Funded by DOE computational nanoscience initiative (MICS, BES))

Outline

- Introduction to Nanoscience
- Electronic Structure Calculations (DFT)
- Code performance on High Performance Computers
- New Methods and Applications

DOE initiative: Theory Modeling and Simulation in Nanaoscinece

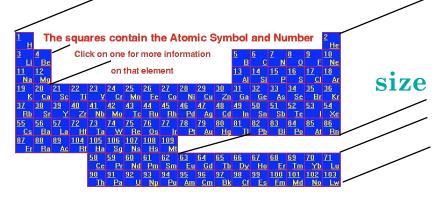
Scalable Methods for Electronic Excitations and Optical Responses of Nanostructures: Mathematics to Algorithms to Observables

Lead PIs: Juan Meza (LBNL) Martin Head-Gordon (UCB,LBNL) (Steven Louie, Lin-Wang Wang, Andrew Canning, John Bell, Chao Yang, Chuck Rendleman at LBNL, Emily Carter(Princeton), James Chelikowsky (UMN) John Dennis (Rice University), Yousef Saad (UMN))

Predicting the Electronic Properties of 3D, Million-Atom Semiconductor Nanostructure Architectures

Lead PIs: Alex Zunger (NREL), Jack Dongarra (UT, ORNL) (Lin-Wang Wang, Andrew Canning, Osni Marques at LBNL, A. Franceschetti, W. Jones, K. Kim, G. Bester NREL)

Projects funded jointly by MICS and BES in DOE


CRD Nanostructures as a new material

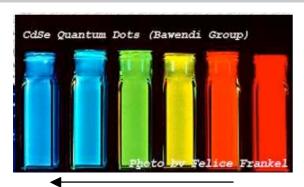
Definition: Nanostructure is an assembly of nanometer scale "building blocks".

Why nanometer scale: This is the scale where the properties of these "building blocks" become different from bulk.

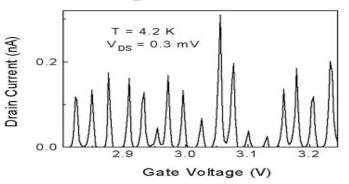
Nanostructure

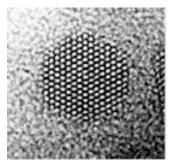
Electron Wavefunction

Both are in nanometers



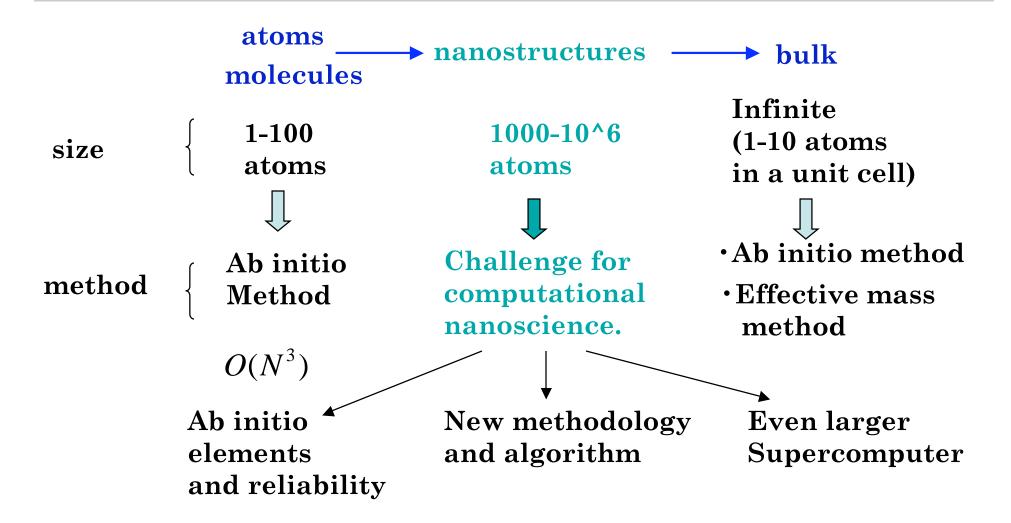
CRD Example: Quantum Dots (QD) CdServer Lag


Band gap increase

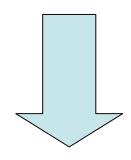

·Single electron effects on transport (Coulomb blockade).

 Mechanical properties, surface effects and no dislocations

CdSe quantum dot (size)



Computational challenges (larger nanostructures)



Ab initio Method: Density Functional (Kohn 98 Nobel Priz (Kohn 98 Nobel Prize)

Many Body Schrodinger Equation (exponential scaling)

$$\{-\sum_{i}\frac{1}{2}\nabla_{i}^{2}+\sum_{i,j}\frac{1}{|r_{i}-r_{j}|}+\sum_{i,I}\frac{Z}{|r_{i}-R_{I}|}\}\Psi(r_{1},...r_{N})=E\Psi(r_{1},...r_{N})$$

Kohn Sham Equation (65): The many body problem can be mapped onto a single particle problem with the same electron density and a different effective potential (cubic scaling cost).

$$\left\{-\frac{1}{2}\nabla^{2} + \int \frac{\rho(r')}{|r-r'|}dr' + \sum_{I} \frac{Z}{|r-R_{I}|} + V_{XC}\right\}\psi_{i}(r) = E_{i}\psi_{i}(r)$$

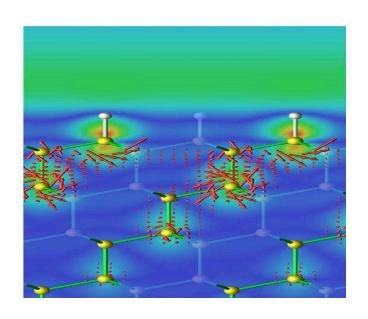
$$\rho(r) = \sum_{i} |\psi_{i}(r)|^{2} = |\Psi(r_{1},...,r_{N})|^{2}$$
Use Local Density Approximation (LDA) for $V = [\rho(r)]$ (good Si

(LDA) for $V_{yC}[\rho(r)]$ (good Si,C)

CRDPlane-wave Pseudopotential Method in DFT

$$\{-\frac{1}{2}\nabla^{2} + \int \frac{\rho(r')}{|r-r'|}dr' + \sum_{I} \frac{Z}{|r-R_{I}|} + V_{XC}(\rho(r))\}\psi_{j}(r) = E_{j}\psi_{j}(r)$$

Solve Kohn-Sham Equations self-consistently for electron wavefunctions within the Local Density Appoximation


- 1. Plane-wave expansion for $\psi_{j,k}(r) = \sum_{g} C_g^j(k) e^{i(g+k).r}$
- 2. Replace "frozen" core by a pseudopotential

Different parts of the Hamiltonian calculated in different spaces (fourier and real) 3d FFT used

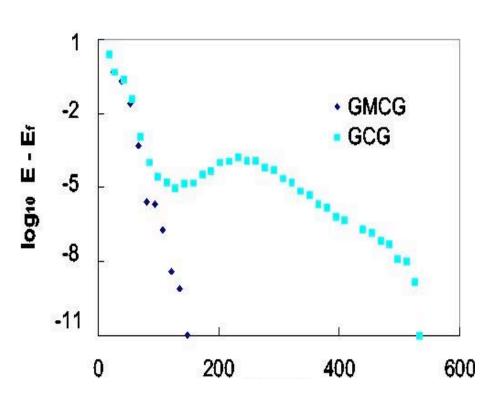
PARATEC (PARAllel Total Energy Code)

- **PARATEC** performs first-principles quantum mechanical total energy calculation using pseudopotentials & plane wave basis set
- **Designed to run on large parallel** machines IBM SP etc. but also runs on PCs
- PARATEC uses all-band CG approach to obtain wavefunctions of electrons
- Generally obtains high percentage of peak on different platforms
- Developed with Louie and Cohen's groups (UCB, LBNL), Raczkowski (Multiple 3d FFTs Peter Haynes and Michel Cote)

PARATEC: Performance

Problem	Р	NERSC (Power3)		Jaquard (Opteron)		Thunder (Itanium2)		Phoenix (X1)		NEC ES (SX6 [*])		NEC SX8	
		Gflops/P	%peak	Gflops/P	%peak	Gflops/P	%peak	Gflops/P	%peak	Gflops/P	%peak	Gflops/P	%peak
488 Atom CdSe Quantum Dot	128	0.93	62%			2.8	51%	3.2	25%	5.1	64%	7.5	64%
	256	0.85	67%	1.98	45%	2.6	47%	3.0	24%	5.0	62%	6.8	62%
	512	0.73	49%	0.95	21%	2.4	44%			4.4	55%		
	1024	0.60	40%			1.8	32%			3.6	46%		

- All architectures generally achieve high performance due to computational intensity of code (BLAS3, FFT)
- ES achieves highest overall performance to date: 5.5Tflop/s on 2048 procs
 - Main ES advantage for this code is fast interconnect
- SX8 achieves highest per-processor performance
- X1 shows lowest % of peak
 - Non-vectorizable code much more expensive on X1 (32:1)


Self-consistent all band method for metallic systems

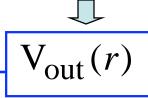
Previous methods use selfconsistent (SC) band by band, with Temperature smearing (eg. VASP code)

drawbacks – band-by-band slow on modern computers (cannot use fast BLAS3 matrix-matrix routines)

New Method uses occupancy in inner iterative loop with all band Grassman method (GMCG method)

Al (100) surface, 10 layers + vacuum GMCG: new method with occupancy

Self-consistent all band method for metals

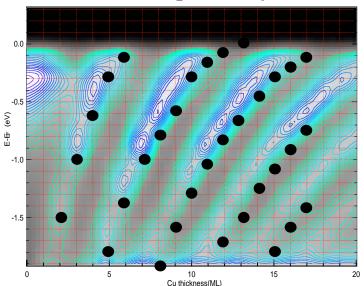

$$\min \sum_{i} \langle \Psi_{i} | \{ -\frac{1}{2} \nabla^{2} + V_{in} \} | \Psi_{i} \rangle$$

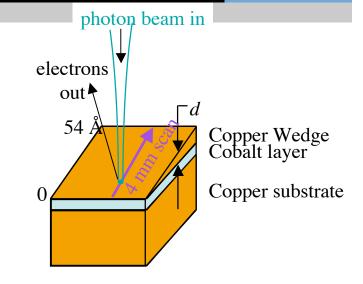
$$\min \sum_{i} f'_{i} \langle \Psi_{i} | \{ -\frac{1}{2} \nabla^{2} + V_{in} \} | \Psi_{i} \rangle$$

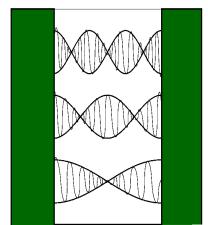
KS - DFT

$$\{\Psi_i\}$$

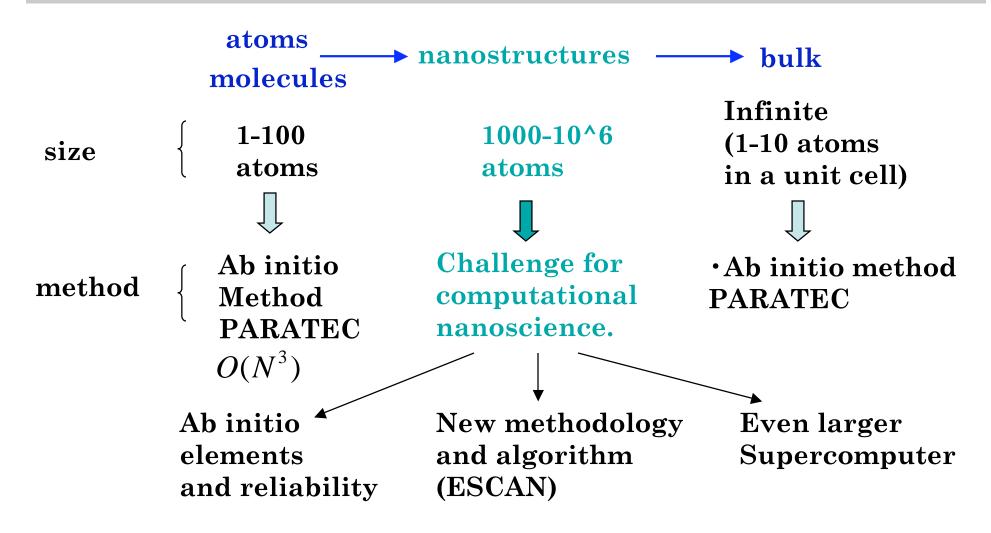
$$\rho(r) = \sum_{i} f_{i} \mathbf{\Psi}_{i}^{*}(r) \mathbf{\Psi}_{i}(r)$$





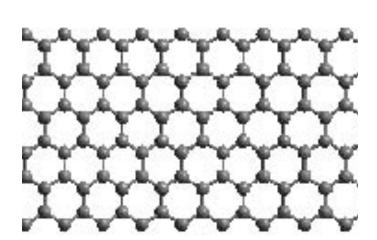

CRDThe Quantization Condition of Quantum-well States in Cu/Co(100)

- Theoretical investigation of Quantum Well states in Cu films using our codes (PARATEC, PEtot) to compare with experiments at the ALS (E. Rotenberg, Y.Z. Wu, Z.Q. Qiu)
- New computational methods for metallic systems used in the calculations.
- •Lead to an understanding of surface effects on the Quantum Well States. Improves on simple Phase Accumulation Model used previously


QW states in Copper Wedge

Difference between theory and experiment improved by taking surface effects into account

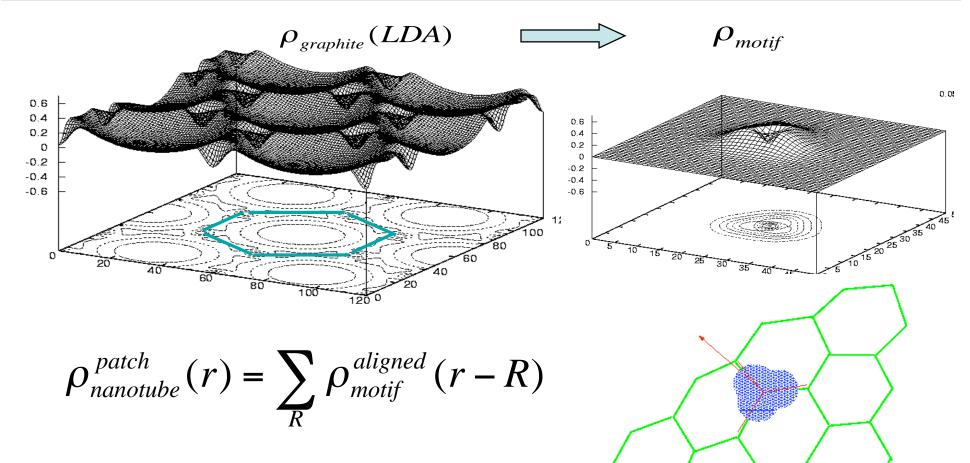
Computational challenges (larger nanostructures)



CRD Charge patching method for larger systems (Wan

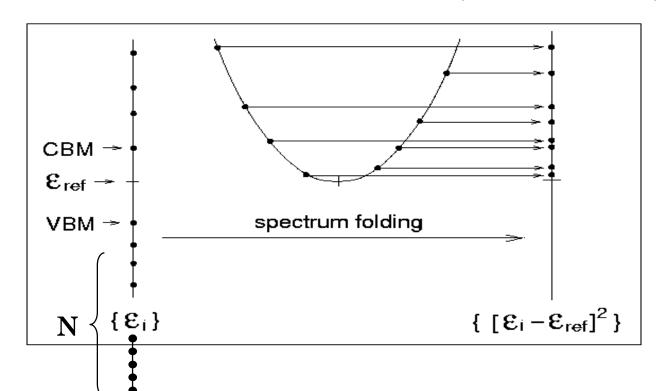

Selfconsistent LDA calculation of a single graphite sheet

Non-selfconsistent LDA quality potential for nanotube


Get information from small system ab initio calc., then generate the charge densities for large systems

CRD Motif based charge patching method

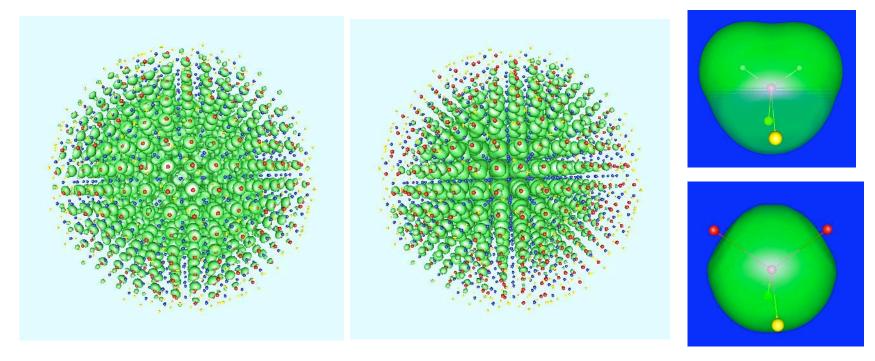
Error: 1%, ~20 meV eigen energy error.


+ Folded Spectrum Method (ESCAN)

$$\{-\frac{1}{2}\nabla^2 + V(r)\}\psi_i(r) = E_i\psi_i(r)$$

$$H\psi_i = \varepsilon_i \psi_i$$

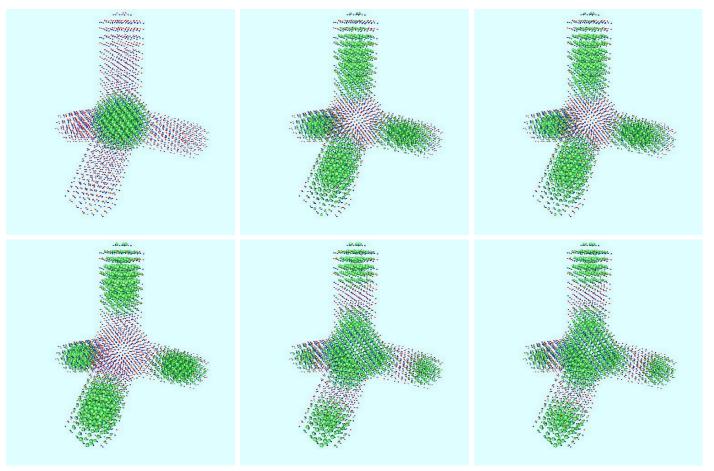
$$(H - \varepsilon_{ref})^2 \psi_i = (\varepsilon_i - \varepsilon_{ref})^2 \psi_i$$

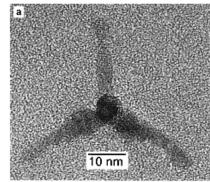

Charge patching: free standing quantum dots

 $In_{675}P_{652}$ LDA quality calculations (eigen energy error ~ 20 meV)

64 processors (IBM SP3) for \sim 1 hour CBM VBM

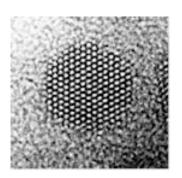
Total charge density motifs



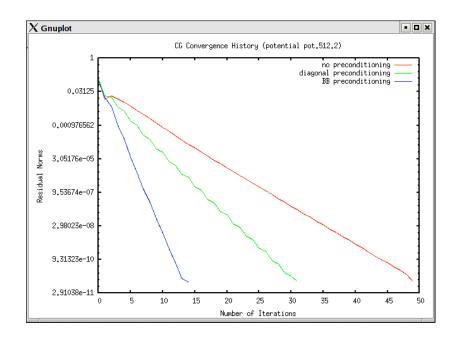


CRD CdSe tetrapod electronic states

Alivisatos group UCB, LBNL



New Preconditioners and Eigensolvers

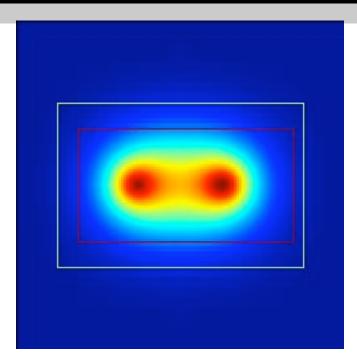


Using preconditioner based on bulk states for nanosystems (away from the surface of the nanostructure system is bulk like)

CdSe Quantum Dot

Convergence of a 512 atom CdSe system with new preconditioner using the ESCAN code

AMR Density Functional Theory (J. Bell, C. Rendleman)

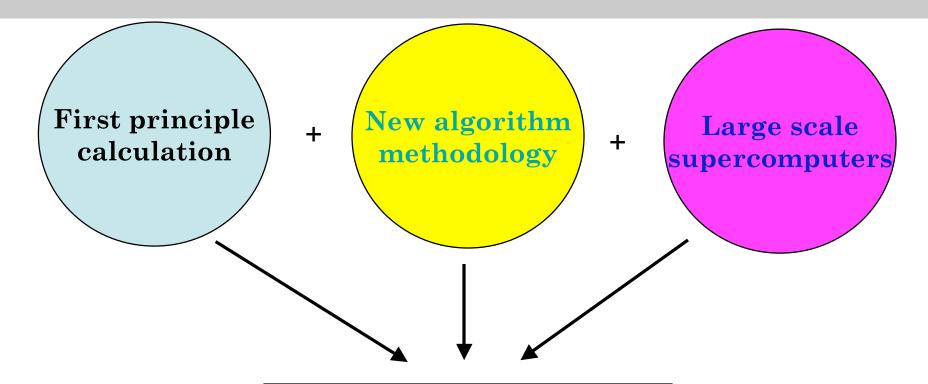


- Real-space methods for Kohn-Sham DFT
 - Electronic orbitals defined on AMR hierarchy
 - Higher-order, compact schemes
 - $O(\alpha MN^3)$ storage (α <1 with AMR)
- Spectral methods restricted to fixed resolution grids
 - Pseudo-spectral, high order discretizations
 - O(MN³/2) storage
- AMR concentrates work where interesting physics occurs (atomic cores, bonds) and away from interatomic regions

CRD AMR DFT Preliminary Results

Effective Resolution	Time	Time- AMR	Refined Domain
32 ³	20		
64 ³	160	100	18.75 %
128 ³	2237	290	7.3 %

- Hydrogen molecule
 - 2 Levels of AMR
 - Approximately 10 iterations converge total energy.


Other projects

- Screened Exchange method for accurate band gaps (improves on DFT) (L-W Wang, B. Lee, A. Canning)
- Generalized Pattern Search Methods for a Surface Structure Determination Problem (M. van Hove, J. Meza, Z. Zhao)
- A Constrained Optimization Algorithm for Total Energy Minimization in Electronic Structure Calculations (C. Yang, J Meza, L-W Wang)

Accurate Large Scale Nanostructure Simulations

